
D03 – Partial Differential Equations

D03FAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03FAF solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard
seven-point finite difference approximation. This routine is designed to be particularly efficient on vector
processors.

2 Specification

SUBROUTINE D03FAF(XS, XF, L, LBDCND, BDXS, BDXF, YS, YF, M,
1 MBDCND, BDYS, BDYF, ZS, ZF, N, NBDCND, BDZS,
2 BDZF, LAMBDA, LDIMF, MDIMF, F, PERTRB, W, LWRK,
3 IFAIL)
INTEGER L, LBDCND, M, MBDCND, N, NBDCND, LDIMF, MDIMF,
1 LWRK, IFAIL
real XS, XF, BDXS(MDIMF,N+1), BDXF(MDIMF,N+1), YS,
1 YF, BDYS(LDIMF,N+1), BDYF(LDIMF,N+1), ZS, ZF,
2 BDZS(LDIMF,M+1), BDZF(LDIMF,M+1), LAMBDA,
3 F(LDIMF,MDIMF,N+1), PERTRB, W(LWRK)

3 Description

D03FAF solves the three-dimensional Helmholtz equation in cartesian co-ordinates:

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ λu = f(x, y, z).

This subroutine forms the system of linear equations resulting from the standard seven-point finite
difference equations, and then solves the system using a method based on the fast Fourier transform
(FFT) described by Swarztrauber [1]. This subroutine is based on the routine HW3CRT from FISHPACK
(see Swarztrauber and Sweet [2]).

More precisely, the routine replaces all the second derivatives by second-order central difference
approximations, resulting in a block tridiagonal system of linear equations. The equations are modified
to allow for the prescribed boundary conditions. Either the solution or the derivative of the solution
may be specified on any of the boundaries, or the solution may be specified to be periodic in any of the
three dimensions. By taking the discrete Fourier transform in the x- and y-directions, the equations are
reduced to sets of tridiagonal systems of equations. The Fourier transforms required are computed using
the multiple FFT routines found in the C06 Chapter Introduction of the NAG Fortran Library.

4 References

[1] Swarztrauber P N (1984) Fast Poisson solvers Studies in Numerical Analysis (ed G H Golub)
Mathematical Association of America

[2] Swarztrauber P N and Sweet R A (1979) Efficient Fortran subprograms for the solution of separable
elliptic partial differential equations ACM Trans. Math. Software 5 352–364

5 Parameters

1: XS — real Input

On entry: the lower bound of the range of x, i.e., XS ≤ x ≤ XF.

Constraint: XS < XF.
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2: XF — real Input

On entry: the upper bound of the range of x, i.e., XS ≤ x ≤ XF.

Constraint: XS < XF.

3: L — INTEGER Input

On entry: the number of panels into which the interval (XS,XF) is subdivided. Hence, there will
be L + 1 grid points in the x-direction given by xi = XS + (i− 1)× δx, for i = 1, 2, . . . ,L+1, where
δx = (XF−XS)/L is the panel width.

Constraint: L ≥ 5.

4: LBDCND — INTEGER Input

On entry: indicates the type of boundary conditions at x = XS and x = XF.

LBDCND = 0

if the solution is periodic in x, i.e., u(XS,y, z) = u(XF,y, z).
LBDCND = 1

if the solution is specified at x = XS and x = XF.
LBDCND = 2

if the solution is specified at x = XS and the derivative of the solution with respect to x is
specified at x = XF.

LBDCND = 3

if the derivative of the solution with respect to x is specified at x = XS and x = XF.
LBDCND = 4

if the derivative of the solution with respect to x is specified at x = XS and the solution is
specified at x = XF.

Constraint: 0 ≤ LBDCND ≤ 4.

5: BDXS(MDIMF,N+1) — real array Input

On entry: the values of the derivative of the solution with respect to x at x = XS. When LBDCND
= 3 or 4, BDXS(j, k) = ux(XS,yj , zk), for j = 1, 2, . . . ,M+1; k = 1, 2, . . . ,N+1.

When LBDCND has any other value, BDXS is not referenced.

6: BDXF(MDIMF,N+1) — real array Input

On entry: the values of the derivative of the solution with respect to x at x = XF>. When LBDCND
= 2 or 3, BDXF(j, k) = ux(XF,yj , zk), for j = 1, 2, . . . ,M+1; k = 1, 2, . . . ,N+1.

When LBDCND has any other value, BDXF is not referenced.

7: YS — real Input

On entry: the lower bound of the range of y, i.e., YS ≤ y ≤ YF.

Constraint: YS < YF.

8: YF — real Input

On entry: the upper bound of the range of y, i.e., YS ≤ y ≤ YF.

Constraint: YS < YF.

9: M — INTEGER Input

On entry: the number of panels into which the interval (YS,YF) is subdivided. Hence, there will
be M+1 grid points in the y-direction given by yj = YS + (j − 1)× δy for j = 1, 2, . . . ,M+1, where
δy = (YF−YS)/M is the panel width.

Constraint: M ≥ 5.
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10: MBDCND — INTEGER Input

On entry: indicates the type of boundary conditions at y = YS and y = YF.

MBDCND = 0

if the solution is periodic in y, i.e., u(x,YF,z) = u(x,YS,z).
MBDCND = 1

if the solution is specified at y = YS and y = YF.
MBDCND = 2

if the solution is specified at y = YS and the derivative of the solution with respect to y is
specified at y = YF.

MBDCND = 3

if the derivative of the solution with respect to y is specified at y = YS and y = YF.
MBDCND = 4

if the derivative of the solution with respect to y is specified at y = YS and the solution is
specified at y = YF.

Constraint: 0 ≤ MBDCND ≤ 4.

11: BDYS(LDIMF,N+1) — real array Input

On entry: the values of the derivative of the solution with respect to y at y = YS. When MBDCND
= 3 or 4, BDYS(i, k) = uy(xi,YS,zk), for i = 1, 2, . . . ,L+1; k = 1, 2, . . . ,N+1.

When MBDCND has any other value, BDYS is not referenced.

12: BDYF(LDIMF,N+1) — real array Input

On entry: the values of the derivative of the solution with respect to y at y = YF. When MBDCND
= 2 or 3, BDYF(i, k) = uy(xi,YF,zk), for i = 1, 2, . . . ,L+1; k = 1, 2, . . . ,N+1.

When MBDCND has any other value, BDYF is not referenced.

13: ZS — real Input

On entry: the lower bound of the range of z, i.e., ZS ≤ z ≤ ZF.

Constraint: ZS < ZF.

14: ZF — real Input

On entry: the upper bound of the range of z, i.e., ZS ≤ z ≤ ZF.

Constraint: ZS < ZF.

15: N — INTEGER Input

On entry: the number of panels into which the interval (ZS,ZF) is subdivided. Hence, there will be
N+1 grid points in the z-direction given by zk = ZS + (k − 1)× δz, for k = 1, 2, . . . ,N+1, where δz
= (ZF−ZS)/N is the panel width.

Constraint: N ≥ 5.
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16: NBDCND — INTEGER Input

On entry: specifies the type of boundary conditions at z = ZS and z = ZF.

NBDCND = 0

if the solution is periodic in z, i.e., u(x, y,ZF) = u(x, y,ZS).
NBDCND = 1

if the solution is specified at z = ZS and z = ZF.
NBDCND = 2

if the solution is specified at z = ZS and the derivative of the solution with respect to z is
specified at z = ZF.

NBDCND = 3

if the derivative of the solution with respect to z is specified at z = ZS and z = ZF.
NBDCND = 4

if the derivative of the solution with respect to z is specified at z = ZS and the solution is
specified at z = ZF.

Constraint: 0 ≤ NBDCND ≤ 4.

17: BDZS(LDIMF,M+1) — real array Input

On entry: the values of the derivative of the solution with respect to z at z = ZS. When NBDCND
= 3 or 4, BDZS(i, j) = uz(xi, yj,ZS), for i = 1, 2, . . . ,L+1; j = 1, 2, . . . ,M+1.

When NBDCND has any other value, BDZS is not referenced.

18: BDZF(LDIMF,M+1) — real array Input

On entry: the values of the derivative of the solution with respect to z at z = ZF. When NBDCND
= 2 or 3, BDZF(i, j) = uz(xi, yj,ZF), for i = 1, 2, . . . ,L+1; j = 1, 2, . . . ,M+1.

When NBDCND has any other value, BDZF is not referenced.

19: LAMBDA — real Input

On entry: the constant λ in the Helmholtz equation. For certain positive values of λ a solution
to the differential equation may not exist, and close to these values the solution of the discretized
problem will be extremely ill-conditioned. If λ > 0, then D03FAF will set IFAIL to 3, but will still
attempt to find a solution. However, since in general the values of λ for which no solution exists
cannot be predicted a priori, the user is advised to treat any results computed with λ > 0 with
great caution.

20: LDIMF — INTEGER Input

On entry: the first dimension of the arrays F, BDYS, BDYF, BDZS and BDZF as declared in the
(sub)program from which D03FAF is called.

Constraint: LDIMF ≥ L + 1.

21: MDIMF — INTEGER Input

On entry: the second dimension of the array F and the first dimension of the arrays BDXS and
BDXF as declared in the (sub)program from which D03FAF is called.

Constraint: MDIMF ≥ M + 1.

22: F(LDIMF,MDIMF,N+1) — real array Input/Output

On entry: the values of the right-side of the Helmholtz equation and boundary values (if any).

F(i, j, k) = f(xi, yj , zk) i = 2, 3, . . . ,L, j = 2, 3, . . . ,M and k = 2, 3, . . . ,N.

On the boundaries F is defined by

D03FAF.4 [NP3390/19/pdf]



D03 – Partial Differential Equations D03FAF

LBDCND F(1, j, k) F(L+1, j, k)

0 f(XS,yj , zk) f(XS,yj , zk)

1 u(XS,yj , zk) u(XF,yj , zk)

2 u(XS,yj , zk) f(XF,yj , zk) j = 1, 2, . . . ,M+1

3 f(XS,yj , zk) f(XF,yj , zk) k = 1, 2, . . . ,N+1

4 f(XS,yj , zk) u(XF,yj , zk)

MBDCND F(i, 1, k) F(i,M+1, k)

0 f(xi,YS,zk) f(xi,YS,zk)

1 u(xi,YS,zk) u(xi,YF,zk)

2 u(xi,YS,zk) f(xi,YF,zk) i = 1, 2, . . . ,L+1

3 f(xi,YS,zk) f(xi,YF,zk) k = 1, 2, . . . ,N+1

4 f(xi,YS,zk) u(xi,YF,zk)

NBDCND F(i, j,1) F(i, j,N+1)

0 f(xi, yj,ZS) f(xi, yj,ZS)

1 u(xi, yj,ZS) u(xi, yj ,ZF)

2 u(xi, yj,ZS) f(xi, yj,ZF) i = 1, 2, . . . ,L+1

3 f(xi, yj,ZS) f(xi, yj,ZF) j = 1, 2, . . . ,M+1

4 f(xi, yj,ZS) u(xi, yj ,ZF)

Note. If the table calls for both the solution u and the right-hand side f on a boundary, then the
solution must be specified.

On exit: F contains the solution u(i, j, k) of the finite difference approximation for the grid point
(xi, yj , zk) for i = 1, 2, . . . ,L+1, j = 1, 2, . . . ,M+1 and k = 1, 2, . . . ,N+1.

23: PERTRB — real Output

On exit: PERTRB= 0, unless a solution to Poisson’s equation (λ = 0) is required with a combination
of periodic or derivative boundary conditions (LBDCND, MBDCND and NBDCND = 0 or 3). In
this case a solution may not exist. PERTRB is a constant, calculated and subtracted from the
array F, which ensures that a solution exists. D03FAF then computes this solution, which is a least-
squares solution to the original approximation. This solution is not unique and is unnormalised.
The value of PERTRB should be small compared to the right-hand side F, otherwise a solution has
been obtained to an essentially different problem. This comparison should always be made to insure
that a meaningful solution has been obtained.

24: W(LWRK) — real array Workspace
25: LWRK — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03FAF is
called. 2 × (N+1) × max(L,M) + 3 × L + 3 × M + 4 × N + 6 is an upper bound on the required
size of W. If LWRK is too small, the routine exits with IFAIL = 2, and if on entry IFAIL = 0 or
IFAIL = −1, a message is output giving the exact value of LWRK required to solve the current
problem.

26: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit.
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6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL = 1

On entry, XS ≥ XF,
or L < 5,

or LBDCND < 0,
or LBDCND > 4,
or YS ≥ YF,
or M < 5,
or MBDCND < 0,
or MBDCND > 4,
or ZS ≥ ZF,
or N < 5,
or NBDCND < 0,
or NBDCND > 4,
or LDIMF < L + 1,
or MDIMF < M + 1.

IFAIL = 2

On entry, LWRK is too small.

IFAIL = 3

On entry, λ > 0.

7 Accuracy

Not applicable.

8 Further Comments

The execution time is roughly proportional to L ×M × N × (log2 L + log2M+ 5), but also depends on
input parameters LBDCND and MBDCND.

9 Example

The example solves the Helmholz equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ λu = f(x, y, z)

for (x, y, z) ∈ [0, 1]× [0, 2π]× [0, π
2 ] where λ = −2, and f(x, y, z) is derived from the exact solution

u(x, y, z) = x4 sin y cos z.

The equation is subject to the following boundary conditions, again derived from the exact solution given
above.

u(0, y, z) and u(1, y, z) are prescribed (i.e., LBDCND = 1).

u(x, 0, z) = u(x, 2π, z) (i.e., MBDCND = 0).

u(x, y, 0) and ux(x, y, π
2 ) are prescribed (i.e., NBDCND = 2).
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9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D03FAF Example Program Text
* Mark 14 Release. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER L, M, N, MAXLM, LDIMF, MDIMF, LWRK
PARAMETER (L=16,M=32,N=20,MAXLM=32,LDIMF=L+1,MDIMF=M+1,

+ LWRK=2*(N+1)*MAXLM+3*L+3*M+4*N+6000)
* .. Local Scalars ..

real DX, DY, DZ, ERROR, LAMBDA, PERTRB, PI, T, XF, XS,
+ YF, YS, ZF, ZS
INTEGER I, IFAIL, J, K, LBDCND, MBDCND, NBDCND

* .. Local Arrays ..
real BDXF(MDIMF,N+1), BDXS(MDIMF,N+1),

+ BDYF(LDIMF,N+1), BDYS(LDIMF,N+1),
+ BDZF(LDIMF,M+1), BDZS(LDIMF,M+1),
+ F(LDIMF,MDIMF,N+1), W(LWRK), X(L+1), Y(M+1),
+ Z(N+1)

* .. External Functions ..
real X01AAF
EXTERNAL X01AAF

* .. External Subroutines ..
EXTERNAL D03FAF

* .. Intrinsic Functions ..
INTRINSIC ABS, COS, real, SIN

* .. Executable Statements ..
WRITE (NOUT,*) ’D03FAF Example Program Results’
LAMBDA = -2.0e0
XS = 0.0e0
XF = 1.0e0
LBDCND = 1
YS = 0.0e0
PI = X01AAF(PI)
YF = 2.0e0*PI
MBDCND = 0
ZS = 0.0e0
ZF = PI/2.0e0
NBDCND = 2

*
* Define the grid points for later use.
*

DX = (XF-XS)/real(L)
DO 20 I = 1, L + 1

X(I) = XS + real(I-1)*DX
20 CONTINUE

DY = (YF-YS)/real(M)
DO 40 J = 1, M + 1

Y(J) = YS + real(J-1)*DY
40 CONTINUE

DZ = (ZF-ZS)/real(N)
DO 60 K = 1, N + 1

Z(K) = ZS + real(K-1)*DZ
60 CONTINUE

*
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* Define the array of derivative boundary values.
*

DO 100 J = 1, M + 1
DO 80 I = 1, L + 1

BDZF(I,J) = -X(I)**4*SIN(Y(J))
80 CONTINUE
100 CONTINUE

*
* Note that for this example all other boundary arrays are
* dummy variables.
*
* We define the function boundary values in the F array.
*

DO 140 K = 1, N + 1
DO 120 J = 1, M + 1

F(1,J,K) = 0.0e0
F(L+1,J,K) = SIN(Y(J))*COS(Z(K))

120 CONTINUE
140 CONTINUE

DO 180 J = 1, M + 1
DO 160 I = 1, L + 1

F(I,J,1) = X(I)**4*SIN(Y(J))
160 CONTINUE
180 CONTINUE

*
* Define the values of the right hand side of the Helmholtz
* equation.
*

DO 240 K = 2, N + 1
DO 220 J = 1, M + 1

DO 200 I = 2, L
F(I,J,K) = 4.0e0*X(I)**2*(3.0e0-X(I)**2)*SIN(Y(J))

+ *COS(Z(K))
200 CONTINUE
220 CONTINUE
240 CONTINUE

*
* Call D03FAF to generate and solve the finite difference equation.
*

IFAIL = 0
*

CALL D03FAF(XS,XF,L,LBDCND,BDXS,BDXF,YS,YF,M,MBDCND,BDYS,BDYF,ZS,
+ ZF,N,NBDCND,BDZS,BDZF,LAMBDA,LDIMF,MDIMF,F,PERTRB,W,
+ LWRK,IFAIL)

*
* Compute discretization error. The exact solution to the
* problem is
*
* U(X,Y,Z) = X**4*SIN(Y)*COS(Z)
*

ERROR = 0.0e0
DO 300 K = 1, N + 1

DO 280 J = 1, M + 1
DO 260 I = 1, L + 1

T = ABS(F(I,J,K)-X(I)**4*SIN(Y(J))*COS(Z(K)))
IF (T.GT.ERROR) ERROR = T

260 CONTINUE
280 CONTINUE
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300 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Maximum component of discretization error =’,

+ ERROR
STOP

*
99999 FORMAT (1X,A,1P,e13.6)

END

9.2 Program Data

None.

9.3 Program Results

D03FAF Example Program Results

Maximum component of discretization error = 5.176553E-04
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